Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(9): 2804-2815, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752179

RESUMO

We report the synthesis of [(L)DyIII(Cy3PO)2]·[BPh4] (1-Dy) (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone and Cy = cyclohexyl) which crystallized in the triclinic, P1̄ space group. The local geometry around Dy(III) in 1-Dy was found to be pentagonal bipyramidal (pseudo-D5h). The AC magnetic susceptibility measurements performed on 1-Dy and on its diluted 1-Y(Dy) samples showed a typical single-molecule magnet signature revealed by the appearance of AC-frequency dependent out-of-phase susceptibility signals in the absence of a static magnetic field. The out-of-phase AC susceptibility signals were well resolved on the application of a small magnetic field (HDC = 500 Oe) and yielded an energy barrier for magnetization flipping of Ueff/kB = 50 K for the diluted derivative. The magnetic studies on 1-Dy and 1-Y(Dy) and data analysis further confirm that Raman and QTM under-barrier magnetic relaxations play a crucial role in lowering Ueff despite the almost axial nature of the Dy(III) ion in 1-Dy. We have rationalized these observations through detailed ab initio calculations performed on the X-ray crystal structure of 1-Dy.

2.
J Med Chem ; 65(24): 16353-16371, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36459415

RESUMO

Emergence of resistance in cancer cells and dose-limiting side effects severely limit the widespread use of platinum (Pt) anticancer drugs. Multi-action hybrid anticancer agents that are constructed by merging two or more pharmacophores offer the prospect of circumventing issues of Pt drugs. Herein, we report the design, synthesis, and in-depth biological evaluation of a ruthenium-ferrocene (Ru-Fc) bimetallic agent [(η6-p-cymene)Ru(1,1,1-trifluoro-4-oxo-4-ferrocenyl-but-2-en-2-olate)Cl] and its five analogues. Along with aquation/anation chemistry, we evaluated the in vitro antitumor potency, Pt cross-resistance profile, and in vivo antiangiogenic properties. A structure activity analysis was performed to understand the impact of Fc, CF3, and p-cymene groups on the anticancer potency of the Ru-Fc hybrid. Finally, in addition to assessing cellular uptake and intracellular distribution, we demonstrated that the Ru-Fc hybrid binds to nucleophilic biomolecules and produces reactive oxygen species, which causes mitochondrial dysfunction and induces ER stress, leading to poly(ADP-ribose) polymerase-mediated necroptotic cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Animais , Metalocenos , Inibidores da Angiogênese/farmacologia , Peixe-Zebra , Rutênio/farmacologia , Rutênio/química , Platina/farmacologia , Platina/química , Antineoplásicos/química , Complexos de Coordenação/química , Linhagem Celular Tumoral
3.
Dalton Trans ; 51(47): 18187-18202, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36398616

RESUMO

A series of Schiff base LH ((E)-2-((pyridin-2-ylmethylene)amino)phenol) supported phenoxo bridged symmetric [Dy2(L)2(hfac)4] (1), [Dy2(L)2(tfac)4] (2) and asymmetric [Dy2(L)2(thd)3(NO3)]·1.5H2O (3) binuclear complexes were isolated using differently substituted ß-diketonate co-ligands (Hhfac = hexafluoroacetylacetonate, Htfac = trifluoroacetylacetonate, and Hthd = 2,2,6,6-tetramethyl-3,5-heptanedione). In all the three complexes 1-3, the two LH ligands provide phenoxo bridging and N-donor atoms. The {Dy2(µ2-O)2} magnetic core structures with LH ligands are found to be the same in 1-3 while the dissimilar functionalities of the axially coordinated different ß-diketonate co-ligands play a crucial role in modulating the magnetic anisotropy of individual DyIII sites and magnetic exchange between them. The experimental static magnetic behaviour suggests the presence of intramolecular antiferromagnetic interactions in all the three complexes 1-3. The strength of the magnetic exchange coupling decreases with increasing magnetic anisotropy of individual DyIII ions from complex 1 to complex 3 and simultaneously their zero-field slow magnetic relaxation behaviors were found to increase with effective energy barriers (ΔE/kB) of 9.04 K, 24.06 K and 25.65 K, respectively. Furthermore, the DFT and ab initio theoretical calculations performed on the X-ray structures of complexes 1-3 support our experimental findings.

4.
Dalton Trans ; 51(38): 14721-14733, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106445

RESUMO

The tetranuclear NiII2LnIII2 complexes, [{L'2{Ni(MeOH)(µ-OAc)}2(µ3-MeO)2Ln2}, LnIII = YIII (1), GdIII (2), TbIII (3), and DyIII (4)], were prepared using a Schiff base ligand, H3L [H3L = 3-{(2-hydroxy-3-methoxybenzylidene)amino}-2-(2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where {L'}3- is the deprotonated open structure of H3L]. X-ray crystallographic analysis of 1-4 revealed that all the complexes crystallized in the orthorhombic (Pbcn) space group, and possessed an isostructural tetranuclear butterfly or defect dicubane like core. Direct current magnetic susceptibility measurements performed on 2-4 revealed that all these complexes show an intramolecular ferromagnetic exchange coupling. Well resolved zero-field out-of-phase signals in ac magnetic susceptibility measurements were observed only in the case of 3 (Ueff = 13.4 K; τ0 = 4.1(7) × 10-7 s). This was attributed to the comparatively strong NiII-TbIII magnetic exchange coupling. DFT and ab initio calculations were carried out on 1-4 to ascertain the nature of the ferromagnetic NiII-LnIII (JNi-Ln) and LnIII-LnIII (JLn-Ln) interactions. Magnetic anisotropy and magnetic relaxation mechanisms were discussed in detail for 3 and 4. Theoretical studies provide a rationale for the slow relaxation of magnetization in 3.

5.
Dalton Trans ; 51(22): 8766-8776, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35615914

RESUMO

We hereby report a series of near-linear trinuclear [Zn2LnIII(HL)4(CH3COO)]·(NO3)2 (where LnIII = La (1-La), Ce (2-Ce), Nd (3-Nd), Sm (4-Sm), Tb (5-Tb), and Dy (6-Dy)) complexes with Schiff base ligand (H2L). Magnetization relaxation dynamic studies on complexes 2-Ce, 5-Tb, and 6-Dy reveal the existence of well resolved frequency dependent zero-field out-of-phase χ''M signals, which is an indicator of a typical single-ion magnet behavior observed only for complex 6-Dy with Ueff = 43.7 K (τ0 = 2.42 × 10-6 s). The presence of two Zn(II) ions near the coordination geometry of Dy(III) ion in 6-Dy is likely to keep the first excited mJ levels significantly away from the ground state mJ level and is responsible for the observation of zero field slow magnetic relaxation behavior. The data collected in the presence of a magnetic field of Hdc = 2 kOe enhances the energy barrier by two-fold (88.63 K, τ0 = 1.36 × 10-7 s) in 6-Dy, suggesting the presence of QTM at zero field along with other under barrier relaxations, such as the Raman process. On the other hand, complex 2-Ce shows field induced slow relaxation of magnetization behavior with an effective energy barrier of 12.24 K (τ0 = 1.89 × 10-4 s). The CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations using MOLCAS 8.0 code further rationalized our experimentally observed magnetization dynamics.

6.
Inorg Chem ; 61(14): 5572-5587, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35348317

RESUMO

The mechanistic investigations between Cu(II) and the anisotropic lanthanides (Ln(III)) are not much explored to date. This is due to the complicated energy spectrum which arises due to the orbital angular momentum of anisotropic lanthanides. Interestingly, the exchange coupling J in Ln(III)-Cu(II) systems was found to be antiferromagnetic for <4f7 metal ions and ferromagnetic for ≥4f7 metal ions, while the net magnitude of JTotal strength gradually decreases moving from f1 to f13. While this is established in several examples, the reason for this intriguing trend is not rationalized. In this article, we have taken up these challenging tasks by synthesizing a family of complexes with the general molecular formula [Cu2Ln(HL)4(NO3)](NO3)2, where Ln = La (1-La), Ce (2-Ce), Pr (3-Pr), Gd (4-Gd), Tb (5-Tb), Dy (6-Dy), and Ho (7-Ho) and HL = C15H15N1O3; (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) is a monodeprotonated tridentate Schiff base ligand. Detailed dc magnetic susceptibility measurements performed for all the complexes reveal that the Cu(II) ion is coupled ferromagnetically to the respective Ln(III) ion, which has more than seven electrons in the 4f shell, while an antiferromagnetic coupling is witnessed if Ln(III) has less than seven electrons. The strength of the exchange coupling constant was quantitatively determined for representative complexes from the high-field/high-frequency electron paramagnetic resonance spectroscopy which follows the order of 4-Gd (1.50(10) cm-1) > 5-Tb (1.18(10) cm-1) > 6-Dy (0.56(10) cm-1 based on the -2JCu-Ln(SCu1→·JLnz→+SCu2→·JLnz→) spin Hamiltonian. The increased axiality in 5-Tb and 6-Dy due to the presence of 3d ions in the near vicinity of an oblate ion and the increased exchange coupling strength between Cu(II) and Tb(III) or Dy(III) is the ideal combination to stabilize magnetic bistability in these complexes in the absence of an external magnetic field with the effective energy barrier of 15.7 K (τo = 2.49 × 10-6 s) and 12.6 K (τo = 1.70 × 10-5 s), respectively. To rationalize this experimental trend, we have performed ab initio CASSCF and DFT calculations. To compute the J values, we have employed POLY_ANISO routines and utilized the computed data to establish the generic mechanism of magnetic coupling in {Cu-Ln-Cu} motifs. These mechanistic findings reveal the importance of 5d orbitals and their energy with respect to the dx2-y2 orbital of Cu(II) ions in controlling the magnetic coupling of {Cu-4f} complexes.

7.
Dalton Trans ; 51(10): 4122-4134, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188157

RESUMO

We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.

8.
Dalton Trans ; 49(43): 15404-15416, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33140796

RESUMO

The reaction of a bulky acetyl acetone ligand 1,3-dimesitylpropane-1,3-dione (MesacacH) with hydrated lanthanide chlorides in the presence of tetramethylammonium hydroxide afforded a new family of neutral mononuclear LnIII complexes [Ln(Mesacac)3(DMF)] (Ln = Dy (1); Tb (2); Y0.91Dy0.09 (3); and Er (4)). The molecular structures of these complexes were confirmed by single crystal X-ray diffraction studies. The coordination geometries of the LnIII centre were analysed by SHAPE analysis which revealed a capped octahedral geometry in 1-4. Photoluminescence studies showed ligand-sensitized green emissions for 2 with an appreciable quantum yield of 0.83%. Static (dc) and dynamic (ac) magnetic studies of complexes 1 and 3 were performed. The dynamic magnetic study revealed that complex 1 exhibits zero-field slow relaxation of the magnetization without showing a clear maximum in the out-of-phase ac susceptibility plots. However, magnetic dilution of 1 with the YIII metal ion (complex 3) and/or the application of a dc magnetic field induces a strong frequency dependence of the ac susceptibility signals with χ''M peaks in the 3-10 K temperature range, thus supporting field-induced SMM behaviour of 1. The relaxation process takes place through a combination of the Orbach and Raman mechanisms. The fitting of the temperature dependence of the relaxation time to the equation τ-1 = τ0-1 exp(-Ueff/kBT) + BTn, allows the extraction of the effective energy barrier Ueff/kB = 70 K (48.7 cm-1) and pre-exponential parameter of τ0 = 2.7 × 10-7 s for the Orbach mechanism (first term) and the parameters B = 0.04 s-1 K-n and n = 6.11, for the Raman mechanism (second term).

9.
Dalton Trans ; 49(37): 13110-13122, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32930277

RESUMO

We hereby report a dinuclear Dy(iii) complex, [Dy(LH3)Cl2]2·2Et2O (1) (LH4 = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide where both the metal centres are in a pentagonal bipyramidal (PBP) geometry with the axial positions being occupied by negatively charged Cl- ions. The complex as well as it's 10% diluted analogue (110) do not show zero-field SMM behaviour. However, in the presence of small optimum dc fields the slow relaxation of magnetization was displayed. The effective energy barrier for 110 at 800 Oe of applied field was extracted as 83(17) K with τ0 = 2(4) × 10-12 s. Through a combined experimental and ab initio electronic structure calculations studies we have thoroughly analysed the role of the ligand field around the Dy(iii), present in pentagonal bipyramidal geometry, in contributing to the slow relaxation of magnetization.

10.
Inorg Chem ; 59(9): 6603-6612, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32309926

RESUMO

A series of neutral homologous complexes [(L)Ln(Cy3PO)Cl] {where Ln = Gd (1), Tb (2), Dy (3), and Er (5)} and [(L)Dy(Ph3PO)Cl] (4) [H2L = 2,6-diacetylpyridine bis-benzoylhydrazone] were isolated. In these complexes, the central lanthanide ion possesses a pentagonal bipyramidal geometry with an overall pseudo D5h symmetry. The coordination environment around the lanthanide ion comprises of three nitrogen and two oxygen donors in an equatorial plane. The axial positions are taken up by a phosphine oxide (O donor) and a chloride ion. Among these compounds, the Dy(III) (3 and 4) analogues were found to be field-induced single-ion magnets.

11.
Bioinformation ; 15(1): 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359992

RESUMO

Homing and tumor attenuation potential of BM-MSCs labelled with superparamagnetic iron-oxide nanoparticles (SPIONs) in a rat model of hepatic cirrhosis was evaluated. Rat BM-MSCs were derived, characterized and labelled with SPIONs (200 nm; 25 mg Fe/ml). Hepatic cirrhosis was induced in Wistar rats (n=30; 10/group) with carbon tetrachloride (CCl4; 0.3 mL/kg body weight) injected twice a week for 12 weeks. Group-I was administered vehicle (castor-oil) alone; Group-II received two doses of unlabelled BM-MSCs (3x106 cells) and Group-III received two doses of SPIONs labelled BM-MSCs (3x106 cells) via tail vein injection (0.5 ml) at weekly intervals. All animals were sacrificed after two weeks for histological, radiological and biochemical analysis. Derived BM-MSCs demonstrated MSCs related CD markers. Histology confirmed induction of hepatic cirrhosis with CCL4. Levels of alanine-aminotransferase, aspartate-aminotransferase,alkaline-phosphatase and gamma glutamyl-transferase returned to normal levels following treatment with BM-MSCs. Uptake and homing of SPIONs labelled BM-MSCs, and reduction in the size of cirrhotic nodules were confirmed using transmission electron microscopy and magnetic resonance imaging respectively. BM-MSCs reduced the pathological effects of CCL4 induced hepatic cirrhosis and labelling BMMSCs with SPIONs were non-toxic and enabled efficient tracking using non-invasive methods.

12.
Inorg Chem ; 58(14): 9085-9100, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31246445

RESUMO

Four mononuclear cobalt(II) complexes with pseudo tetrahedral geometry were isolated with different counteranions; their structure solution reveals the molecular formula as [Co(L1)4]X2 [where L1 = thiourea (NH2CSNH2) and X = NO3 (1), Br (2), and I (3)] and [Co(L1)4](SiF6) (4). The detailed analysis of direct-current (dc) magnetic data reveals a zero-field splitting (ZFS; D) with mS = ±3/2 as the ground levels (D < 0) for the four complexes. The magnitude of the ZFS parameter is larger, in absolute value, for 1 (D = -61.7 cm-1) than the other three complexes (-5.4, -5.1, and -12.2 cm-1 for 2-4, respectively). The sign of D for 1, 2, and 4 was unambiguously determined by X-band electron paramagnetic resonance (EPR) spectroscopy of the diluted samples (10%) at 5 K. For 3, the sign of D was naturally endorsed from the frequency-dependent out-of-phase signal (χM″) observed in the absence of an external dc magnetic field and confirmed by high-frequency EPR (70-600 GHz) experiments performed on a representative pure polycrystalline 3, which gave a quantitative D value of -5.10(7) cm-1. Further, the drastic changes in the spin Hamiltonian parameters and their related relaxation dynamics phenomena (of 2-4 compared to 1) were rationalized using ab initio complete-active-space self-consistent field/n-electron valence perturbation theory calculations. Calculations disclose that the anion-induced structural distortion observed in 2-4 leads to a nonfavorable overlap between the π orbital of cobalt(II) and the π* orbital of the sulfur atom that reduces the overall |D| value in these complexes compared to 1. The present study demonstrates that not only the first but also the second coordination sphere significantly influences the magnitude of the ZFS parameters. Particularly, a reduction of D of up to ∼90% occurs (in 2-4 compared to 1) upon a simple variation of the counteranions and offers a viable approach to modulate ZFS in transition-metal-containing single-molecule magnets.

13.
Adv Clin Exp Med ; 26(8): 1171-1178, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29264872

RESUMO

BACKGROUND: Bone marrow-derived mesenchymal stem cells (MSCs) are reported to improve hepatic fibrosis, and may impact the signaling mechanisms leading to the induction of hepatocellular carcinoma (HCC) in animal models of liver cirrhosis. OBJECTIVES: The aim of this study was to clarify and explain the therapeutic role played by MSCs in hepatic cirrhosis and HCC by tracking them using nanoparticles. MATERIAL AND METHODS: Liver cirrhosis and HCC were established in rats with the use of carbon tetrachloride and diethylnitrosamine injection. Magnetic resonance imaging (MRI) was used to track nanoparticlelabeled MSCs in the intact animal following injection and to monitor the changes in the hepatic parenchyma. RESULTS: Labeling of MSCs with iron oxide nanoparticles did not adversely affect their viability and proliferation. MRI indicated a significant reduction in tumor mass in the labeled MSCs group compared to the control group. Histopathologic examination of the liver, following MSCs treatment, showed an apparently normal looking liver with no evidence of neoplastic cellular changes. The biochemical results support these findings. CONCLUSIONS: This work documents that MSCs could be labeled with nanoparticles and traced in normal and cirrhotic liver and in liver with HCC in animals using MRI. MRI monitors the homing and localization of MSCs in the liver. MSCs infusion in animal models of cirrhosis and carcinoma may prove to be useful in limiting the cirrhotic process. Also, it may have a possible therapeutic potential on the carcinogenic process.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Movimento Celular , Feminino , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Ratos
14.
Dalton Trans ; 44(43): 18743-7, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26479520

RESUMO

A novel oxo-bridged, carboxylate free 'ferric wheel' was isolated with the molecular formula [FeIII8(µ-O)4(L(2-))8] (1). Magnetic susceptibility measurements suggest that the Fe(III) ions are coupled antiferromagnetically and magnetic data modelling yields J1 = -26.4 cm(-1), J2 = -170 cm(-1) which are rationalized by DFT calculation. The exchange value for of -170 cm(-1) (Fe-O(oxo)-Fe) is the largest exchange value known compared to any homometallic or heterometallic wheel reported to date.

15.
J Neurol Sci ; 353(1-2): 149-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956234

RESUMO

Perrault syndrome (PRLTS) is a clinically and genetically heterogeneous disorder. Both male and female patients suffer from sensory neuronal hearing loss in early childhood, and female patients are characterized by premature ovarian failure and infertility after puberty. Clinical diagnosis may not be possible in early life, because key features of PRLTS, for example infertility and premature ovarian failure, do not appear before puberty. Limb spasticity, muscle weakness, and intellectual disability have also been observed in PRLTS patients. Mutations in five genes, HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. We discovered a consanguineous Saudi family with the PRLTS3 phenotype showing an autosomal recessive mode of inheritance. The patients had developed profound hearing loss, brain atrophy, and lower limb spasticity in early childhood. For molecular diagnosis, we complimented genome-wide homozygosity mapping with whole exome sequencing analyses and identified a novel homozygous mutation in exon 6 of CLPP at chromosome 19p13.3. To our knowledge, early onset with regression is a unique feature of these PRLTS patients that has not been reported so far. This study broadens the clinical spectrum of PRLTS3.


Assuntos
Consanguinidade , Endopeptidase Clp/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto/genética , Encéfalo/patologia , Criança , Aberrações Cromossômicas , Análise Mutacional de DNA , Saúde da Família , Feminino , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Reprodutibilidade dos Testes , Arábia Saudita/epidemiologia
16.
Dalton Trans ; 43(46): 17375-84, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25330279

RESUMO

We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for better MCE efficiency.


Assuntos
Complexos de Coordenação/química , Gadolínio/química , Elementos da Série dos Lantanídeos/química , Magnetismo , Níquel/química , Praseodímio/química , Temperatura , Zinco/química , Cristalografia por Raios X
17.
Chemistry ; 20(44): 14235-9, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25214152

RESUMO

Four isostructural [Ni2 Ln2 (CH3 CO2 )3 (HL)4 (H2 O)2 ](3+) (Ln(3+) =Dy (1), Tb (2), Ho (3) or Lu (4)) complexes and a dinuclear [NiGd(HL)2 (NO3 )3 ] (5) complex are reported (where HL=2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate). For compounds 1-3 and 5, the Ni(2+) ions are ferromagnetically coupled to the respective lanthanide ions. The ferromagnetic coupling in 1 suppresses the quantum tunnelling of magnetisation (QTM), resulting in a rare zero dc field Ni-Dy single-molecule magnet, with an anisotropy barrier Ueff of 19 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...